Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CSAOT: Cooperative Multi-Agent System for Active Object Tracking (2501.13994v1)

Published 23 Jan 2025 in cs.CV, cs.AI, and cs.RO

Abstract: Object Tracking is essential for many computer vision applications, such as autonomous navigation, surveillance, and robotics. Unlike Passive Object Tracking (POT), which relies on static camera viewpoints to detect and track objects across consecutive frames, Active Object Tracking (AOT) requires a controller agent to actively adjust its viewpoint to maintain visual contact with a moving target in complex environments. Existing AOT solutions are predominantly single-agent-based, which struggle in dynamic and complex scenarios due to limited information gathering and processing capabilities, often resulting in suboptimal decision-making. Alleviating these limitations necessitates the development of a multi-agent system where different agents perform distinct roles and collaborate to enhance learning and robustness in dynamic and complex environments. Although some multi-agent approaches exist for AOT, they typically rely on external auxiliary agents, which require additional devices, making them costly. In contrast, we introduce the Collaborative System for Active Object Tracking (CSAOT), a method that leverages multi-agent deep reinforcement learning (MADRL) and a Mixture of Experts (MoE) framework to enable multiple agents to operate on a single device, thereby improving tracking performance and reducing costs. Our approach enhances robustness against occlusions and rapid motion while optimizing camera movements to extend tracking duration. We validated the effectiveness of CSAOT on various interactive maps with dynamic and stationary obstacles.

Summary

We haven't generated a summary for this paper yet.