2000 character limit reached
Multivariable $(\varphi_q,\mathcal{O}_K^{\times})$-modules associated to $p$-adic representations of $\mathrm{Gal}(\overline{K}/K)$ (2501.13580v3)
Published 23 Jan 2025 in math.NT
Abstract: Let $K$ be an unramified extension of $\mathbb{Q}p$, and $E$ a finite extension of $K$ with ring of integers $\mathcal{O}_E$. We associate to every finite type continuous $\mathcal{O}_E$-representation $\rho$ of $\mathrm{Gal}(\overline{K}/K)$ an \'etale $(\varphi_q,\mathcal{O}_K{\times})$-module $D{A_{\mathrm{mv},E}}{(0)}(\rho)$ over $A_{\mathrm{mv},E}$, where $A_{\mathrm{mv},E}$ is the $p$-adic completion of a completed localization of the Iwasawa algebra $\mathcal{O}E[\negthinspace[\mathcal{O}_K]\negthinspace]$. Furthermore, we prove that the functor $D{A_{\mathrm{mv},E}}{(0)}$ is fully faithful and exact. This functor is a $p$-adic analogue of $D_A{(0)}$ in the recent work of Breuil, Herzig, Hu, Morra and Schraen.