Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open or Closed LLM for Lesser-Resourced Languages? Lessons from Greek (2501.12826v1)

Published 22 Jan 2025 in cs.CL, cs.AI, and cs.LG

Abstract: NLP for lesser-resourced languages faces persistent challenges, including limited datasets, inherited biases from high-resource languages, and the need for domain-specific solutions. This study addresses these gaps for Modern Greek through three key contributions. First, we evaluate the performance of open-source (Llama-70b) and closed-source (GPT-4o mini) LLMs on seven core NLP tasks with dataset availability, revealing task-specific strengths, weaknesses, and parity in their performance. Second, we expand the scope of Greek NLP by reframing Authorship Attribution as a tool to assess potential data usage by LLMs in pre-training, with high 0-shot accuracy suggesting ethical implications for data provenance. Third, we showcase a legal NLP case study, where a Summarize, Translate, and Embed (STE) methodology outperforms the traditional TF-IDF approach for clustering \emph{long} legal texts. Together, these contributions provide a roadmap to advance NLP in lesser-resourced languages, bridging gaps in model evaluation, task innovation, and real-world impact.

Summary

We haven't generated a summary for this paper yet.