Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An analysis of the combination of feature selection and machine learning methods for an accurate and timely detection of lung cancer (2501.10980v1)

Published 19 Jan 2025 in cs.LG

Abstract: One of the deadliest cancers, lung cancer necessitates an early and precise diagnosis. Because patients have a better chance of recovering, early identification of lung cancer is crucial. This review looks at how to diagnose lung cancer using sophisticated machine learning techniques like Random Forest (RF) and Support Vector Machine (SVM). The Chi-squared test is one feature selection strategy that has been successfully applied to find related features and enhance model performance. The findings demonstrate that these techniques can improve detection efficiency and accuracy while also assisting in runtime reduction. This study produces recommendations for further research as well as ideas to enhance diagnostic techniques. In order to improve healthcare and create automated methods for detecting lung cancer, this research is a critical first step.

Summary

We haven't generated a summary for this paper yet.