Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Latent-space adversarial training with post-aware calibration for defending large language models against jailbreak attacks (2501.10639v3)

Published 18 Jan 2025 in cs.CR and cs.CL

Abstract: Ensuring safety alignment is a critical requirement for LLMs, particularly given increasing deployment in real-world applications. Despite considerable advancements, LLMs remain susceptible to jailbreak attacks, which exploit system vulnerabilities to circumvent safety measures and elicit harmful or inappropriate outputs. Furthermore, while adversarial training-based defense methods have shown promise, a prevalent issue is the unintended over-defense behavior, wherein models excessively reject benign queries, significantly undermining their practical utility. To address these limitations, we introduce LATPC, a Latent-space Adversarial Training with Post-aware Calibration framework. LATPC dynamically identifies safety-critical latent dimensions by contrasting harmful and benign inputs, enabling the adaptive construction of targeted refusal feature removal attacks. This mechanism allows adversarial training to concentrate on real-world jailbreak tactics that disguise harmful queries as benign ones. During inference, LATPC employs an efficient embedding-level calibration mechanism to minimize over-defense behaviors with negligible computational overhead. Experimental results across five types of disguise-based jailbreak attacks demonstrate that LATPC achieves a superior balance between safety and utility compared to existing defense frameworks. Further analysis demonstrates the effectiveness of leveraging safety-critical dimensions in developing robust defense methods against jailbreak attacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.