Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Generative AI Ethics Playbook (2501.10383v1)

Published 17 Dec 2024 in cs.CY and cs.HC

Abstract: The Generative AI Ethics Playbook provides guidance for identifying and mitigating risks of machine learning systems across various domains, including natural language processing, computer vision, and generative AI. This playbook aims to assist practitioners in diagnosing potential harms that may arise during the design, development, and deployment of datasets and models. It offers concrete strategies and resources for mitigating these risks, to help minimize negative impacts on users and society. Drawing on current best practices in both research and ethical considerations, this playbook aims to serve as a comprehensive resource for AI/ML practitioners. The intended audience of this playbook includes machine learning researchers, engineers, and practitioners who are involved in the creation and implementation of generative and multimodal models (e.g., text-to-text, image-to-image, text-to-image, text-to-video). Specifically, we provide transparency/documentation checklists, topics of interest, common questions, examples of harms through case studies, and resources and strategies to mitigate harms throughout the Generative AI lifecycle. This playbook was made collaboratively over the course of 16 months through extensive literature review of over 100 resources and peer-reviewed articles, as well as through an initial group brainstorming session with 18 interdisciplinary AI ethics experts from industry and academia, and with additional feedback from 8 experts (5 of whom were in the initial brainstorming session). We note that while this playbook provides examples, discussion, and harm mitigation strategies, research in this area is ongoing. Our playbook aims to be a practically useful survey, taking a high-level view rather than aiming for covering the entire existing body of research.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com