Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Retrosynthesis Planning of Macromolecules Using Large Language Models and Knowledge Graphs (2501.08897v2)

Published 15 Jan 2025 in cs.AI

Abstract: Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates LLMs and knowledge graphs. By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. By considering the complex interdependencies among chemical reactants, a novel Multi-branched Reaction Pathway Search Algorithm (MBRPS) is proposed to help identify all valid multi-branched reaction pathways, which arise when a single product decomposes into multiple reaction intermediates. In contrast, previous studies were limited to cases where a product decomposes into at most one reaction intermediate. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways. This demonstrates utilizing LLMs for literature consultation to accomplish specific tasks is possible and crucial for future materials research, given the vast amount of materials-related literature.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets