Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings (2501.08219v1)

Published 14 Jan 2025 in cs.LG

Abstract: LLMs have shown significant improvements in many NLP tasks, accelerating their rapid adoption across many industries. These models are resource-intensive, requiring extensive computational resources both during training and inference, leading to increased energy consumption and negative environmental impact. As their adoption accelerates, the sustainability of LLMs has become a critical issue, necessitating strategies to optimize their runtime efficiency without compromising performance. Hence, it is imperative to identify the parameters that significantly influence the performance and energy efficiency of LLMs. To that end, in this work, we investigate the effect of important parameters on the performance and energy efficiency of LLMs during inference and examine their trade-offs. First, we analyze how different types of models with varying numbers of parameters and architectures perform on tasks like text generation, question answering, and summarization by benchmarking LLMs such as Falcon-7B, Mistral-7B-v0.1, T5-3B, GPT-2, GPT-J-6B, and GPT-Neo-2.7B. Second, we study input and output sequence characteristics such as sequence length concerning energy consumption, performance, and throughput. Finally, we explore the impact of hardware-based power-saving techniques, i.e., Dynamic Voltage Frequency Scaling (DVFS), on the models' latency and energy efficiency. Our extensive benchmarking and statistical analysis reveal many interesting findings, uncovering how specific optimizations can reduce energy consumption while maintaining throughput and accuracy. This study provides actionable insights for researchers and practitioners to design energy-efficient LLM inference systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Paul Joe Maliakel (2 papers)
  2. Shashikant Ilager (22 papers)
  3. Ivona Brandic (29 papers)

Summary

We haven't generated a summary for this paper yet.