Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the adaptive and continuous learning capabilities of artificial neural networks: Lessons from multi-neuromodulatory dynamics (2501.06762v1)

Published 12 Jan 2025 in q-bio.NC, cs.LG, and cs.NE

Abstract: Continuous, adaptive learning-the ability to adapt to the environment and improve performance-is a haLLMark of both natural and artificial intelligence. Biological organisms excel in acquiring, transferring, and retaining knowledge while adapting to dynamic environments, making them a rich source of inspiration for artificial neural networks (ANNs). This study explores how neuromodulation, a fundamental feature of biological learning systems, can help address challenges such as catastrophic forgetting and enhance the robustness of ANNs in continuous learning scenarios. Driven by neuromodulators including dopamine (DA), acetylcholine (ACh), serotonin (5-HT) and noradrenaline (NA), neuromodulatory processes in the brain operate at multiple scales, facilitating dynamic responses to environmental changes through mechanisms ranging from local synaptic plasticity to global network-wide adaptability. Importantly, the relationship between neuromodulators, and their interplay in the modulation of sensory and cognitive processes are more complex than expected, demonstrating a "many-to-one" neuromodulator-to-task mapping. To inspire the design of novel neuromodulation-aware learning rules, we highlight (i) how multi-neuromodulatory interactions enrich single-neuromodulator-driven learning, (ii) the impact of neuromodulators at multiple spatial and temporal scales, and correspondingly, (iii) strategies to integrate neuromodulated learning into or approximate it in ANNs. To illustrate these principles, we present a case study to demonstrate how neuromodulation-inspired mechanisms, such as DA-driven reward processing and NA-based cognitive flexibility, can enhance ANN performance in a Go/No-Go task. By integrating multi-scale neuromodulation, we aim to bridge the gap between biological learning and artificial systems, paving the way for ANNs with greater flexibility, robustness, and adaptability.

Summary

We haven't generated a summary for this paper yet.