Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized Solutions for nonlinear Schrödinger-Poisson equations involving nearly mass-critical exponents (2501.05983v1)

Published 10 Jan 2025 in math.AP

Abstract: We study the Schr\"{o}dinger-Poisson-Slater equation \begin{equation*}\left{\begin{array}{lll} -\Delta u + \lambda u + \big(|x|{-1} \ast |u|{2}\big)u = V(x) u{ p_{\varepsilon}-1 }, \, \text{ in } \mathbb{R}{3},\[2mm] \int_{\mathbb{R}3}u2 \,dx= a,\,\, u > 0,\,\, u \in H{1}(\mathbb{R}{3}), \end{array} \right. \end{equation*} where $\lambda$ is a Lagrange multiplier, $V(x)$ is a real-valued potential, $a\in \mathbb{R}{+}$ is a constant, $ p{\varepsilon} = \frac{10}{3} \pm \varepsilon$ and $\varepsilon>0$ is a small parameter. In this paper, we prove that it is the positive critical value of the potential $V$ that affects the existence of single-peak solutions for this problem. Furthermore, we prove the local uniqueness of the solutions we construct.

Summary

We haven't generated a summary for this paper yet.