Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable and high-order accurate finite difference methods for the diffusive viscous wave equation (2501.05771v1)

Published 10 Jan 2025 in math.NA and cs.NA

Abstract: The diffusive viscous wave equation describes wave propagation in diffusive and viscous media. Examples include seismic waves traveling through the Earth's crust, taking into account of both the elastic properties of rocks and the dissipative effects due to internal friction and viscosity; acoustic waves propagating through biological tissues, where both elastic and viscous effects play a significant role. We propose a stable and high-order finite difference method for solving the governing equations. By designing the spatial discretization with the summation-by-parts property, we prove stability by deriving a discrete energy estimate. In addition, we derive error estimates for problems with constant coefficients using the normal mode analysis and for problems with variable coefficients using the energy method. Numerical examples are presented to demonstrate the stability and accuracy properties of the developed method.

Summary

We haven't generated a summary for this paper yet.