Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of subfields of adelic algebras by a product formula (2501.04365v1)

Published 8 Jan 2025 in math.RA and math.NT

Abstract: We consider projective, irreducible, non-singular curves over an algebraically closed field $\k$. A cover $Y \to X$ of such curves corresponds to an extension $\Omega/\Sigma$ of their function fields and yields an isomorphism $\A_{Y} \simeq \A_{X} \otimes_{\Sigma} \Omega$ of their geometric adele rings. The primitive element theorem shows that $\A_{Y}$ is a quotient of $\A_{X}[T]$ by a polynomial. In general, we may look at quotient algebras $\AXp{\p} = \A_{X}[T]/(\p(T))$ where $\p(T) \in \A_{X}[T]$ is monic and separable over $\A_{X}$, and try to characterize the field extensions $\Omega/\Sigma$ lying in $\AXp{\p}$ which arise from covers as above. We achieve this topologically, namely, as those $\Omega$ which embed discretely in $\AXp{\p}$, and in terms of an additive analog of the product formula for global fields, a result which is reminiscent of classical work of Artin-Whaples and Iwasawa. The technical machinery requires studying which topology on $\AXp{\p}$ is natural for this problem. Local compactness no longer holds, but instead we have linear topologies defined by commensurability of $\k$-subspaces which coincide with the restricted direct product topology with respect to integral closures. The content function is given as an index measuring the discrepancy in commensurable subspaces.

Summary

We haven't generated a summary for this paper yet.