Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models (2501.04312v1)

Published 8 Jan 2025 in cs.SE

Abstract: Deep learning (DL) libraries, widely used in AI applications, often contain vulnerabilities like buffer overflows and use-after-free errors. Traditional fuzzing struggles with the complexity and API diversity of DL libraries such as TensorFlow and PyTorch, which feature over 1,000 APIs. Testing all these APIs is challenging due to complex inputs and varied usage patterns. While LLMs show promise in code understanding and generation, existing LLM-based fuzzers lack deep knowledge of API edge cases and struggle with test input generation. To address this, we propose DFUZZ, an LLM-driven fuzzing approach for DL libraries. DFUZZ leverages two insights: (1) LLMs can reason about error-triggering edge cases from API code and apply this knowledge to untested APIs, and (2) LLMs can accurately synthesize test programs to automate API testing. By providing LLMs with a "white-box view" of APIs, DFUZZ enhances reasoning and generation for comprehensive fuzzing. Experimental results show that DFUZZ outperforms state-of-the-art fuzzers in API coverage for TensorFlow and PyTorch, uncovering 37 bugs, with 8 fixed and 19 under developer investigation.

Summary

We haven't generated a summary for this paper yet.