Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A portmanteau test for multivariate non-stationary functional time series with an increasing number of lags (2501.00118v1)

Published 30 Dec 2024 in stat.ME, math.ST, and stat.TH

Abstract: Multivariate locally stationary functional time series provide a flexible framework for modeling complex data structures exhibiting both temporal and spatial dependencies while allowing for time-varying data generating mechanism. In this paper, we introduce a specialized portmanteau-type test tailored for assessing white noise assumptions for multivariate locally stationary functional time series without dimension reduction. A simple bootstrap procedure is proposed to implement the test because the limiting distribution can be non-standard or even does not exist. Our approach is based on a new Gaussian approximation result for a maximum of degenerate $U$-statistics of second-order functional time series, which is of independent interest. Through theoretical analysis and simulation studies, we demonstrate the efficacy and adaptability of the proposed method in detecting departures from white noise assumptions in multivariate locally stationary functional time series.

Summary

We haven't generated a summary for this paper yet.