2000 character limit reached
Cohomology of flag supervarieties and resolutions of determinantal ideals. II (2412.20797v1)
Published 30 Dec 2024 in math.AG, math.AC, and math.RT
Abstract: We compute the coherent cohomology of the structure sheaf of complex periplectic Grassmannians. In particular, we show that it can be decomposed as a tensor product of the singular cohomology ring of a Grassmannian for either the symplectic or orthogonal group together with a semisimple representation of the periplectic Lie supergroup. The restriction of the latter to its even subgroup has an explicit multiplicity-free description in terms of Schur functors and is closely related to syzygies of (skew-)symmetric determinantal ideals. We develop tools for studying splitting rings for Coxeter groups of types BC and D, which may be of independent interest.