Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing with D-Algebraic Sequences (2412.20630v1)

Published 30 Dec 2024 in math.AG, cs.NA, cs.SC, and math.NA

Abstract: A sequence is difference algebraic (or D-algebraic) if finitely many shifts of its general term satisfy a polynomial relationship; that is, they are the coordinates of a generic point on an affine hypersurface. The corresponding equations are called algebraic difference equations (ADE). We show that subsequences of D-algebraic sequences, indexed by arithmetic progressions, satisfy ADEs of the same orders as the original sequences. Additionally, we provide algorithms for operations with D-algebraic sequences and discuss the difference-algebraic nature of holonomic and $C2$-finite sequences.

Summary

We haven't generated a summary for this paper yet.