Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator estimates in homogenization of Lévy-type operators with periodic coefficients (2412.20408v1)

Published 29 Dec 2024 in math.AP and math.FA

Abstract: The paper deals with homogenization of self-adjoint operators in $L_2(\mathbb Rd)$ of the form $$ ({\mathbb A}\eps u) (\x) = \int{\Rd} \mu(\x/\eps, \y/\eps) \frac{\left( u(\x) - u(\y) \right)}{|\x - \y|{d+\alpha}}\,d\y, $$ where $0< \alpha < 2$, and $\eps>0$ is a small parameter. It is assumed that the function $\mu(\x,\y)$ is $\Zd$-periodic in each variable, $\mu(\x,\y)=\mu(\y,\x)$ for all $\x$ and $\y$, and $0< \mu_- \leqslant \mu(\x,\y) \leqslant \mu_+< \infty$. Under these assumptions we show that the resolvent $({\mathbb A}\eps + I){-1}$ converges, as $\eps\to0$, in the operator norm in $L_2(\Rd)$ to the resolvent $({\mathbb A}0 + I){-1}$ of the limit operator ${\mathbb A}0$ given by $$ ({\mathbb A}0 u) (\x) = \int{\Rd} \mu0 \frac{\left( u(\x) - u(\y) \right)}{|\x - \y|{d+\alpha}}\,d\y, $$ where $\mu0$ is the mean value of $\mu(\x,\y)$. We also show that the operator norm of the discrepancy $|({\mathbb A}\eps + I){-1} - (\A0 + I){-1}|{L_2(\mathbb Rd)\to L_2(\mathbb Rd)}$ can be estimated by $O(\eps\alpha)$, if $0< \alpha < 1$, by $O(\eps (1 + | \operatorname{ln} \eps|)2)$, if $ \alpha =1$, and by $O(\eps{2- \alpha})$, if $1< \alpha < 2$.

Summary

We haven't generated a summary for this paper yet.