Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An experimental study on fairness-aware machine learning for credit scoring problem (2412.20298v1)

Published 28 Dec 2024 in cs.LG, cs.CY, and stat.ML

Abstract: Digitalization of credit scoring is an essential requirement for financial organizations and commercial banks, especially in the context of digital transformation. Machine learning techniques are commonly used to evaluate customers' creditworthiness. However, the predicted outcomes of machine learning models can be biased toward protected attributes, such as race or gender. Numerous fairness-aware machine learning models and fairness measures have been proposed. Nevertheless, their performance in the context of credit scoring has not been thoroughly investigated. In this paper, we present a comprehensive experimental study of fairness-aware machine learning in credit scoring. The study explores key aspects of credit scoring, including financial datasets, predictive models, and fairness measures. We also provide a detailed evaluation of fairness-aware predictive models and fairness measures on widely used financial datasets.

Summary

We haven't generated a summary for this paper yet.