2000 character limit reached
Fractional nonlinear Schrödinger and Hartree equations in modulation spaces (2412.19714v2)
Published 27 Dec 2024 in math.AP
Abstract: We establish global well-posedness for the mass subcritical nonlinear fractional Schr\"odinger equation $$iu_t - (-\Delta)\frac{\beta}{2} u+F(u)=0$$ having radial initial data in modulation spaces $M{p,\frac{p}{p-1}}(\mathbb Rn)$ for $n \geq 2, p>2$ and $p$ sufficiently close to $2.$ The nonlinearity $F(u)$ is either of power-type $F(u)=\pm (|u|{\alpha}u)\; (0<\alpha<2\beta / n)$ or Hartree-type $(|x|{-\nu} \ast |u|{2})u \; (0<\nu<\min{\beta,n}).$ Our order of dispersion $\beta$ lies in $(2n/ (2n-1), 2).$