Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology optimization for particle flow problems using Eulerian-Eulerian model with a finite difference method (2412.19619v1)

Published 27 Dec 2024 in math.OC and physics.flu-dyn

Abstract: Particle flow processing is widely employed across various industrial applications and technologies. Due to the complex interactions between particles and fluids, designing effective devices for particle flow processing is challenging. In this study, we propose a topology optimization method to design flow fields that effectively enhance the resistance encountered by particles. Particle flow is simulated using an Eulerian-Eulerian model based on a finite difference method. Automatic differentiation is implemented to compute sensitivities using a checkpointing algorithm. We formulate the optimization problem as maximizing the variation of drag force on particles while reducing fluid power dissipation. Initially, we validate the finite difference flow solver through numerical examples of particle flow problems and confirm that the corresponding topology optimization produces a result comparable to the benchmark problem. Furthermore, we investigate the effects of Reynolds and Stokes numbers on the optimized flow field. The numerical results indicate that serpentine flow fields can effectively enhance the variation in particle drag force.

Summary

We haven't generated a summary for this paper yet.