Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pretabular Tense Logics over S4t (2412.19558v1)

Published 27 Dec 2024 in math.LO

Abstract: A logic $L$ is called tabular if it is the logic of some finite frame and $L$ is pretabular if it is not tabular while all of its proper consistent extensions are tabular. Pretabular modal logics are by now well investigated. In this work, we study pretabular tense logics in the lattice $\mathsf{NExt}(\mathsf{S4}t)$ of all extensions of $\mathsf{S4}_t$, tense $\mathsf{S4}$. For all $n,m,k,l\in\mathbb{Z}+\cup{\omega}$, we define the tense logic $\mathsf{S4BP}{n,m}{k,l}$ with respectively bounded width, depth and z-degree. We give characterizations of pretabular logics in some lattices of the form $\mathsf{NExt}(\mathsf{S4BP}{n,m}{k,l})$. We show that the set $\mathsf{Pre}(\mathsf{S4.3}_t)$ of all pretabular logics extending $\mathsf{S4.3}_t$ contains exactly 5 logics. Moreover, we prove that $|\mathsf{Pre}(\mathsf{S4BP}{2,\omega}{2,2})|=\aleph_0$ and $|\mathsf{Pre}(\mathsf{S4BP}{2,\omega}_{2,3})|=2{\aleph_0}$. Finally, we show that for all cardinal $\kappa$ such that $\kappa\leq{\aleph_0}$ or $\kappa=2{\aleph_0}$, $|\mathsf{Pre}(L)|=\kappa$ for some $L\in\mathsf{NExt}(\mathsf{S4}_t)$. It follows that $|\mathsf{Pre}(\mathsf{S4}_t)|=2{\aleph_0}$, which answers the open problem about the cardinality of $\mathsf{Pre}(\mathsf{S4}_t)$ raised in \cite{Rautenberg1979}.

Summary

We haven't generated a summary for this paper yet.