Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Overview of Machine Learning-Driven Resource Allocation in IoT Networks (2412.19478v1)

Published 27 Dec 2024 in cs.NI and eess.SP

Abstract: In the wake of disruptive IoT technologies generating massive amounts of diverse data, Machine Learning (ML) will play a crucial role in bringing intelligence to Internet of Things (IoT) networks. This paper provides a comprehensive analysis of the current state of resource allocation within IoT networks, focusing specifically on two key categories: Low-Power IoT Networks and Mobile IoT Networks. We delve into the resource allocation strategies that are crucial for optimizing network performance and energy efficiency in these environments. Furthermore, the paper explores the transformative role of Machine Learning (ML), Deep Learning (DL), and Reinforcement Learning (RL) in enhancing IoT functionalities. We highlight a range of applications and use cases where these advanced technologies can significantly improve decision-making and optimization processes. In addition to the opportunities presented by ML, DL, and RL, we also address the potential challenges that organizations may face when implementing these technologies in IoT settings. These challenges include crucial accuracy, low flexibility and adaptability, and high computational cost, etc. Finally, the paper identifies promising avenues for future research, emphasizing the need for innovative solutions to overcome existing hurdles and improve the integration of ML, DL, and RL into IoT networks. By providing this holistic perspective, we aim to contribute to the ongoing discourse on resource allocation strategies and the application of intelligent technologies in the IoT landscape.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Zhengdong Li (4 papers)

Summary

We haven't generated a summary for this paper yet.