Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On tight tree-complete hypergraph Ramsey numbers (2412.19461v1)

Published 27 Dec 2024 in math.CO

Abstract: Chv\'atal showed that for any tree $T$ with $k$ edges the Ramsey number $R(T,n)=k(n-1)+1$ ("Tree-complete graph Ramsey numbers." Journal of Graph Theory 1.1 (1977): 93-93). For $r=3$ or $4$, we show that, if $T$ is an $r$-uniform non-trivial tight tree, then the hypergraph Ramsey number $R(T,n)=\Theta(n{r-1})$. The 3-uniform result comes from observing a construction of Cooper and Mubayi. The main contribution of this paper is the 4-uniform construction, which is inspired by the Cooper-Mubayi 3-uniform construction.

Summary

We haven't generated a summary for this paper yet.