Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy types of Hom complexes of graph homomorphisms whose codomains are square-free (2412.19039v1)

Published 26 Dec 2024 in math.CO and math.AT

Abstract: Given finite simple graphs $G$ and $H$, the Hom complex $\mathrm{Hom}(G,H)$ is a polyhedral complex having the graph homomorphisms $G\to H$ as the vertices. We determine the homotopy type of each connected component of $\mathrm{Hom}(G,H)$ when $H$ is square-free, meaning that it does not contain the $4$-cycle graph $C_4$ as a subgraph. Specifically, for a connected $G$ and a square-free $H$, we show that each connected component of $\mathrm{Hom}(G,H)$ is homotopy equivalent to a wedge sum of circles. We further show that, given any graph homomorphism $f\colon G\to H$ to a square-free $H$, one can determine the homotopy type of the connected component of $\mathrm{Hom}(G,H)$ containing $f$ algorithmically.

Summary

We haven't generated a summary for this paper yet.