Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A proof of Gromov's non-squeezing theorem (2412.18462v1)

Published 24 Dec 2024 in math.SG and math.DG

Abstract: The original proof of the Gromov's non-squeezing theorem [Gro85] is based on pseudo-holomorphic curves. The central ingredient is the compactness of the moduli space of pseudo-holomorphic spheres in the symplectic manifold $(\mathbb{CP}1\times T{2n-2}, \omega_{\mathrm{FS}}\oplus \omega_{\mathrm{std}})$ representing the homology class $[\mathbb{CP}1\times{\operatorname{pt}}]$. In this article, we give two proofs of this compactness. The fact that the moduli space carries the minimal positive symplectic area is essential to our proofs. The main idea is to reparametrize the curves to distribute the symplectic area evenly and then apply either the mean value inequality for pseudo-holomorphic curves or the Gromov-Schwarz lemma to obtain a uniform bound on the gradient. Our arguments avoid bubbling analysis and Gromov's removable singularity theorem, which makes our proof of Gromov's non-squeezing theorem more elementary.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com