2000 character limit reached
Repeated-Root Constacyclic Codes of Length $3p^s$ over the Finite Non-Chain Ring $\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}$ and their Duals (2412.17697v1)
Published 23 Dec 2024 in math.CO
Abstract: This study aims to determine the algebraic structures of $\alpha$-constacyclic codes of length $3ps$ over the finite commutative non-chain ring $\mathcal{R}=\frac{\mathbb{F}_{pm}[u, v]}{\langle u2, v2, uv-vu\rangle}$, for a prime $p \neq 3.$ For the unit $\alpha$, we consider two different instances: when $\alpha$ is a cube in $\mathcal{R}$ and when it is not. Analyzing the first scenario is relatively easy. When $\alpha$ is not a unit in $\mathcal{R}$, we consider several subcases and determine the algebraic structures of constacyclic codes in those cases. Further, we also provide the number of codewords and the duals of $\alpha$-constacyclic codes.