Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-Based Non-Linear Inverse Learning (2412.16794v1)

Published 21 Dec 2024 in stat.ML and cs.LG

Abstract: We study statistical inverse learning in the context of nonlinear inverse problems under random design. Specifically, we address a class of nonlinear problems by employing gradient descent (GD) and stochastic gradient descent (SGD) with mini-batching, both using constant step sizes. Our analysis derives convergence rates for both algorithms under classical a priori assumptions on the smoothness of the target function. These assumptions are expressed in terms of the integral operator associated with the tangent kernel, as well as through a bound on the effective dimension. Additionally, we establish stopping times that yield minimax-optimal convergence rates within the classical reproducing kernel Hilbert space (RKHS) framework. These results demonstrate the efficacy of GD and SGD in achieving optimal rates for nonlinear inverse problems in random design.

Summary

We haven't generated a summary for this paper yet.