Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Proximal Newton Adaptive Importance Sampler (2412.16558v2)

Published 21 Dec 2024 in stat.CO and stat.ME

Abstract: Adaptive importance sampling (AIS) algorithms are a rising methodology in signal processing, statistics, and machine learning. An effective adaptation of the proposals is key for the success of AIS. Recent works have shown that gradient information about the involved target density can greatly boost performance, but its applicability is restricted to differentiable targets. In this paper, we propose a proximal Newton adaptive importance sampler for the estimation of expectations with respect to non-smooth target distributions. We implement a scaled Newton proximal gradient method to adapt the proposal distributions, enabling efficient and optimized moves even when the target distribution lacks differentiability. We show the good performance of the algorithm in two scenarios: one with convex constraints and another with non-smooth sparse priors.

Summary

We haven't generated a summary for this paper yet.