Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind Deconvolution of Graph Signals: Robustness to Graph Perturbations (2412.15133v1)

Published 19 Dec 2024 in eess.SP

Abstract: We study blind deconvolution of signals defined on the nodes of an undirected graph. Although observations are bilinear functions of both unknowns, namely the forward convolutional filter coefficients and the graph signal input, a filter invertibility requirement along with input sparsity allow for an efficient linear programming reformulation. Unlike prior art that relied on perfect knowledge of the graph eigenbasis, here we derive stable recovery conditions in the presence of small graph perturbations. We also contribute a provably convergent robust algorithm, which alternates between blind deconvolution of graph signals and eigenbasis denoising in the Stiefel manifold. Reproducible numerical tests showcase the algorithm's robustness under several graph eigenbasis perturbation models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.