Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The hypergraph removal process (2412.15039v1)

Published 19 Dec 2024 in math.CO and math.PR

Abstract: Let $k\geq 2$ and fix a $k$-uniform hypergraph $\mathcal{F}$. Consider the random process that, starting from a $k$-uniform hypergraph $\mathcal{H}$ on $n$ vertices, repeatedly deletes the edges of a copy of $\mathcal{F}$ chosen uniformly at random and terminates when no copies of $\mathcal{F}$ remain. Let $R(\mathcal{H},\mathcal{F})$ denote the number of edges that are left after termination. We show that $R(\mathcal{H},\mathcal{F})=n{k-1/\rho\pm o(1)}$, where $\rho:=(\lvert E(\mathcal{F})\rvert-1)/(\lvert V(\mathcal{F})\rvert -k)$, holds with high probability provided that $\mathcal{F}$ is strictly $k$-balanced and $\mathcal{H}$ is sufficiently dense with pseudorandom properties. Since we may in particular choose $\mathcal{F}$ and $\mathcal{H}$ to be complete graphs, this confirms the major folklore conjecture in the area in a very strong form.

Summary

We haven't generated a summary for this paper yet.