Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fréchet Sufficient Dimension Reduction for Metric Space-Valued Data via Distance Covariance (2412.13122v1)

Published 17 Dec 2024 in stat.ME

Abstract: We propose a novel Fr\'echet sufficient dimension reduction (SDR) method based on kernel distance covariance, tailored for metric space-valued responses such as count data, probability densities, and other complex structures. The method leverages a kernel-based transformation to map metric space-valued responses into a feature space, enabling efficient dimension reduction. By incorporating kernel distance covariance, the proposed approach offers enhanced flexibility and adaptability for datasets with diverse and non-Euclidean characteristics. The effectiveness of the method is demonstrated through synthetic simulations and several real-world applications. In all cases, the proposed method runs faster and consistently outperforms the existing Fr\'echet SDR approaches, demonstrating its broad applicability and robustness in addressing complex data challenges.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com