Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the integrability properties of Leray-Hopf solutions of the Navier-Stokes equations on $\mathbb{R}^3$ (2412.13066v2)

Published 17 Dec 2024 in math.AP

Abstract: Let $r,s \in [2,\infty]$ and consider the Navier-Stokes equations on $\mathbb{R}3$. We study the following two questions for suitable $s$-homogeneous Banach spaces $X \subset \mathcal{S}'$: does every $u_0 \in L2_\sigma$ have a weak solution that belongs to $Lr(0,\infty;X)$, and are the $Lr(0,\infty;X)$ norms of the solutions bounded uniformly in viscosity? We show that if $\frac{2}{r} + \frac{3}{s} < \frac{3}{2}-\frac{1}{2r}$, then for a Baire generic datum $u_0 \in L2_\sigma$, no weak solution $u\nu$ belongs to $Lr(0,\infty;X)$. If $\frac{3}{2}-\frac{1}{2r} \leq \frac{2}{r} + \frac{3}{s} < \frac{3}{2}$ instead, global solvability in $Lr(0,\infty;X)$ is equivalent to the a priori estimate $|u\nu|_{Lr(0,\infty;X)} \leq C \nu{3-5/r-6/s} |u_0|{L2}{4/r+6/s-2}$. Furthermore, we can only have $\limsup{\nu \to 0} |u\nu|_{Lr(0,\infty;Z)} < \infty$ for all $u_0 \in L2_\sigma$ if $\frac{2}{r} + \frac{3}{s}= \frac{3}{2}-\frac{1}{2r}$. The above results and their variants rule out, for a Baire generic $L2_\sigma$ datum, $L4(0,T;L4)$ integrability and various other known sufficient conditions for the energy equality. As another application, for suitable 2-homogeneous Banach spaces $Z \hookrightarrow L2_\sigma$, each $u_0 \in Z$ has a Leray-Hopf solution $u \in L3(0,\infty;\dot{B}_{3,\infty}{1/3})$ if and only if a uniform-in-viscosity bound $|u|{L3(0,\infty;\dot{B}{3,\infty}{1/3})} \leq C |u_0|Z{2/3}$ holds. As a by-product we show that if global regularity holds for the Navier-Stokes equations, then for a Baire generic $L2\sigma$ datum, the Leray-Hopf solution is unique and satisfies the energy equality. We also show that if global regularity holds in the Euler equations, then anomalous energy dissipation must fail for a Baire generic $L2_\sigma$ datum. These two results also hold on the torus $\mathbb{T}3$.

Summary

We haven't generated a summary for this paper yet.