Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Analysis of Zero-Shot Capability of Time-Series Foundation Models in Short-Term Load Prediction (2412.12834v1)

Published 17 Dec 2024 in eess.SY and cs.SY

Abstract: Short-term load prediction (STLP) is critical for modern power distribution system operations, particularly as demand and generation uncertainties grow with the integration of low-carbon technologies, such as electric vehicles and photovoltaics. In this study, we evaluate the zero-shot prediction capabilities of five Time-Series Foundation Models (TSFMs)-a new approach for STLP where models perform predictions without task-specific training-against two classical models, Gaussian Process (GP) and Support Vector Regression (SVR), which are trained on task-specific datasets. Our findings indicate that even without training, TSFMs like Chronos, TimesFM, and TimeGPT can surpass the performance of GP and SVR. This finding highlights the potential of TSFMs in STLP.

Summary

We haven't generated a summary for this paper yet.