Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection (2412.11681v1)

Published 16 Dec 2024 in eess.IV, cs.AI, and cs.CV

Abstract: Pulmonary pathologies are a significant global health concern, often leading to fatal outcomes if not diagnosed and treated promptly. Chest radiography serves as a primary diagnostic tool, but the availability of experienced radiologists remains limited. Advances in AI and machine learning, particularly in computer vision, offer promising solutions to address this challenge. This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs. The study leverages diverse datasets comprising over 135,120 frontal chest radiographs to train a Convolutional Neural Network (CNN). A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal categories and then identify specific pathologies, including lung nodules. The deep learning model achieves notable results in nodule classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888. Despite these successes, some misclassifications were observed, primarily false negatives. In conclusion, the model demonstrates robust potential for generalization across diverse patient populations, attributed to the geographic diversity of the training dataset. Future work could focus on integrating ETL data distribution strategies and expanding the dataset with additional nodule-type samples to further enhance diagnostic accuracy.

Summary

We haven't generated a summary for this paper yet.