Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BUPD: A Bayesian under-parameterized basket design with the unit information prior in oncology trials (2412.11140v1)

Published 15 Dec 2024 in stat.ME

Abstract: Basket trials in oncology enroll multiple patients with cancer harboring identical gene alterations and evaluate their response to targeted therapies across cancer types. Several existing methods have extended a Bayesian hierarchical model borrowing information on the response rates in different cancer types to account for the heterogeneity of drug effects. However, these methods rely on several pre-specified parameters to account for the heterogeneity of response rates among different cancer types. Here, we propose a novel Bayesian under-parameterized basket design with a unit information prior (BUPD) that uses only one (or two) pre-specified parameters to control the amount of information borrowed among cancer types, considering the heterogeneity of response rates. BUPD adapts the unit information prior approach, originally developed for borrowing information from historical clinical trial data, to enable mutual information borrowing between two cancer types. BUPD enables flexible controls of the type 1 error rate and power by explicitly specifying the strength of borrowing while providing interpretable estimations of response rates. Simulation studies revealed that BUPD reduced the type 1 error rate in scenarios with few ineffective cancer types and improved the power in scenarios with few effective cancer types better than five existing methods. This study also illustrated the efficiency of BUPD using response rates from a real basket trial.

Summary

We haven't generated a summary for this paper yet.