Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forecasting realized covariances using HAR-type models (2412.10791v1)

Published 14 Dec 2024 in econ.EM

Abstract: We investigate methods for forecasting multivariate realized covariances matrices applied to a set of 30 assets that were included in the DJ30 index at some point, including two novel methods that use existing (univariate) log of realized variance models that account for attenuation bias and time-varying parameters. We consider the implications of some modeling choices within the class of heterogeneous autoregressive models. The following are our key findings. First, modeling the logs of the marginal volatilities is strongly preferred over direct modeling of marginal volatility. Thus, our proposed model that accounts for attenuation bias (for the log-response) provides superior one-step-ahead forecasts over existing multivariate realized covariance approaches. Second, accounting for measurement errors in marginal realized variances generally improves multivariate forecasting performance, but to a lesser degree than previously found in the literature. Third, time-varying parameter models based on state-space models perform almost equally well. Fourth, statistical and economic criteria for comparing the forecasting performance lead to some differences in the models' rankings, which can partially be explained by the turbulent post-pandemic data in our out-of-sample validation dataset using sub-sample analyses.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com