Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Enumerating Higher Bruhat Orders Through Deletion and Contraction (2412.10532v1)

Published 13 Dec 2024 in math.CO

Abstract: The higher Bruhat orders $\mathcal{B}(n,k)$ were introduced by Manin-Schechtman to study discriminantal hyperplane arrangements and subsequently studied by Ziegler, who connected $\mathcal{B}(n,k)$ to oriented matroids. In this paper, we consider the enumeration of $\mathcal{B}(n,k)$ and improve upon Balko's asymptotic lower and upper bounds on $|\mathcal{B}(n,k)|$ by a factor exponential in $k$. A proof of Ziegler's formula for $|\mathcal{B}(n,n-3)|$ is given and a bijection between a certain subset of $\mathcal{B}(n,n-4)$ and totally symmetric plane partitions is proved. Central to our proofs are deletion and contraction operations for the higher Bruhat orders, defined in analogy with matroids. Dual higher Bruhat orders are also introduced, and we construct isomorphisms relating the higher Bruhat orders and their duals. Additionally, weaving functions are introduced to generalize Felsner's encoding of elements in $\mathcal{B}(n,2)$ to all higher Bruhat orders $\mathcal{B}(n,k)$.

Summary

We haven't generated a summary for this paper yet.