Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Graph Homophily Measures (2412.09663v1)

Published 12 Dec 2024 in cs.LG, cs.DM, and cs.SI

Abstract: Homophily is a graph property describing the tendency of edges to connect similar nodes. There are several measures used for assessing homophily but all are known to have certain drawbacks: in particular, they cannot be reliably used for comparing datasets with varying numbers of classes and class size balance. To show this, previous works on graph homophily suggested several properties desirable for a good homophily measure, also noting that no existing homophily measure has all these properties. Our paper addresses this issue by introducing a new homophily measure - unbiased homophily - that has all the desirable properties and thus can be reliably used across datasets with different label distributions. The proposed measure is suitable for undirected (and possibly weighted) graphs. We show both theoretically and via empirical examples that the existing homophily measures have serious drawbacks while unbiased homophily has a desirable behavior for the considered scenarios. Finally, when it comes to directed graphs, we prove that some desirable properties contradict each other and thus a measure satisfying all of them cannot exist.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com