Reweighted Time-Evolving Block Decimation for Improved Quantum Dynamics Simulations (2412.08730v1)
Abstract: We introduce a simple yet significant improvement to the time-evolving block decimation (TEBD) tensor network algorithm for simulating the time dynamics of strongly correlated one-dimensional (1D) mixed quantum states. The efficiency of 1D tensor network methods stems from using a product of matrices to express either: the coefficients of a wavefunction, yielding a matrix product state (MPS); or the expectation values of a density matrix, yielding a matrix product density operator (MPDO). To avoid exponential computational costs, TEBD truncates the matrix dimension while simulating the time evolution. However, when truncating a MPDO, TEBD does not favor the likely more important low-weight expectation values, such as $\langle c_i\dagger c_j \rangle$, over the exponentially many high-weight expectation values, such as $\langle c_{i_1}\dagger c\dagger_{i_2} \cdots c_{i_n} \rangle$ of weight $n$, despite the critical importance of the low-weight expectation values. Motivated by this shortcoming, we propose a reweighted TEBD (rTEBD) algorithm that deprioritizes high-weight expectation values by a factor of $\gamma{-n}$ during the truncation. This simple modification (which only requires reweighting certain matrices by a factor of $\gamma$ in the MPDO) makes rTEBD significantly more accurate than the TEBD time-dependent simulation of an MPDO, and competive with and sometimes better than TEBD using MPS. Furthermore, by prioritizing low-weight expectation values, rTEBD preserves conserved quantities to high precision.