Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heavy Tail Robust Estimation and Inference for Average Treatment Effects (2412.08458v1)

Published 11 Dec 2024 in stat.ME, math.ST, and stat.TH

Abstract: We study the probability tail properties of Inverse Probability Weighting (IPW) estimators of the Average Treatment Effect (ATE) when there is limited overlap between the covariate distributions of the treatment and control groups. Under unconfoundedness of treatment assignment conditional on covariates, such limited overlap is manifested in the propensity score for certain units being very close (but not equal) to 0 or 1. This renders IPW estimators possibly heavy tailed, and with a slower than sqrt(n) rate of convergence. Trimming or truncation is ultimately based on the covariates, ignoring important information about the inverse probability weighted random variable Z that identifies ATE by E[Z]= ATE. We propose a tail-trimmed IPW estimator whose performance is robust to limited overlap. In terms of the propensity score, which is generally unknown, we plug-in its parametric estimator in the infeasible Z, and then negligibly trim the resulting feasible Z adaptively by its large values. Trimming leads to bias if Z has an asymmetric distribution and an infinite variance, hence we estimate and remove the bias using important improvements on existing theory and methods. Our estimator sidesteps dimensionality, bias and poor correspondence properties associated with trimming by the covariates or propensity score. Monte Carlo experiments demonstrate that trimming by the covariates or the propensity score requires the removal of a substantial portion of the sample to render a low bias and close to normal estimator, while our estimator has low bias and mean-squared error, and is close to normal, based on the removal of very few sample extremes.

Citations (18)

Summary

We haven't generated a summary for this paper yet.