Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Inference for Large Models with Task Offloading and Early Exiting (2412.08284v1)

Published 11 Dec 2024 in cs.DC

Abstract: In 5G smart cities, edge computing is employed to provide nearby computing services for end devices, and the large-scale models (e.g., GPT and LLaMA) can be deployed at the network edge to boost the service quality. However, due to the constraints of memory size and computing capacity, it is difficult to run these large-scale models on a single edge node. To meet the resource constraints, a large-scale model can be partitioned into multiple sub-models and deployed across multiple edge nodes. Then tasks are offloaded to the edge nodes for collaborative inference. Additionally, we incorporate the early exit mechanism to further accelerate inference. However, the heterogeneous system and dynamic environment will significantly affect the inference efficiency. To address these challenges, we theoretically analyze the coupled relationship between task offloading strategy and confidence thresholds, and develop a distributed algorithm, termed DTO-EE, based on the coupled relationship and convex optimization. DTO-EE enables each edge node to jointly optimize its offloading strategy and the confidence threshold, so as to achieve a promising trade-off between response delay and inference accuracy. The experimental results show that DTO-EE can reduce the average response delay by 21%-41% and improve the inference accuracy by 1%-4%, compared to the baselines.

Summary

We haven't generated a summary for this paper yet.