Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical approximations for a hyperbolic integrodifferential equation with a non-positive variable-sign kernel and nonlinear-nonlocal damping (2412.07394v2)

Published 10 Dec 2024 in math.NA and cs.NA

Abstract: This work considers the Galerkin approximation and analysis for a hyperbolic integrodifferential equation, where the non-positive variable-sign kernel and nonlinear-nonlocal damping with both the weak and viscous damping effects are involved. We derive the long-time stability of the solution and its finite-time uniqueness. For the semi-discrete-in-space Galerkin scheme, we derive the long-time stability of the semi-discrete numerical solution and its finite-time error estimate by technical splitting of intricate terms. Then we further apply the centering difference method and the interpolating quadrature to construct a fully discrete Galerkin scheme and prove the long-time stability of the numerical solution and its finite-time error estimate by designing a new semi-norm. Numerical experiments are performed to verify the theoretical findings.

Summary

We haven't generated a summary for this paper yet.