Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short hierarchically hyperbolic groups II: quotients and the Hopf property for Artin groups (2412.04364v2)

Published 5 Dec 2024 in math.GR

Abstract: We prove that most Artin groups of large and hyperbolic type are Hopfian, meaning that every self-epimorphism is an isomorphism. The class covered by our result is generic, in the sense of Goldsborough-Vaskou. Moreover, assuming the residual finiteness of certain hyperbolic groups with an explicit presentation, we get that all large and hyperbolic type Artin groups are residually finite. We also show that most quotients of the five-holed sphere mapping class group are hierarchically hyperbolic, up to taking powers of the normal generators of the kernels. The main tool we use to prove both results is a Dehn-filling-like procedure for short hierarchically hyperbolic groups (these also include e.g. non-geometric 3-manifolds, and triangle- and square-free RAAGs).

Summary

We haven't generated a summary for this paper yet.