Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Deep-Learning Model for El Niño Southern Oscillation in the Low-Data Regime (2412.03743v2)

Published 4 Dec 2024 in cs.LG and physics.ao-ph

Abstract: While deep-learning models have demonstrated skillful El Ni~no Southern Oscillation (ENSO) forecasts up to one year in advance, they are predominantly trained on climate model simulations that provide thousands of years of training data at the expense of introducing climate model biases. Simpler Linear Inverse Models (LIMs) trained on the much shorter observational record also make skillful ENSO predictions but do not capture predictable nonlinear processes. This motivates a hybrid approach, combining the LIMs modest data needs with a deep-learning non-Markovian correction of the LIM. For O(100 yr) datasets, our resulting Hybrid model is more skillful than the LIM while also exceeding the skill of a full deep-learning model. Additionally, while the most predictable ENSO events are still identified in advance by the LIM, they are better predicted by the Hybrid model, especially in the western tropical Pacific for leads beyond about 9 months, by capturing the subsequent asymmetric (warm versus cold phases) evolution of ENSO.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com