Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On multiplicative recurrence along linear patterns (2412.03504v1)

Published 4 Dec 2024 in math.NT and math.DS

Abstract: In a recent article, Donoso, Le, Moreira and Sun studied sets of recurrence for actions of the multiplicative semigroup $(\mathbb{N}, \times)$ and provided some sufficient conditions for sets of the form $S={(an+b)/(cn+d) \colon n \in \mathbb{N} }$ to be sets of recurrence for such actions. A necessary condition for $S$ to be a set of multiplicative recurrence is that for every completely multiplicative function $f$ taking values on the unit circle, we have that $\liminf_{n \to \infty} |f(an+b)-f(cn+d)|=0.$ In this article, we fully characterize the integer quadruples $(a,b,c,d)$ which satisfy the latter property. Our result generalizes a result of Klurman and Mangerel concerning the pair $(n,n+1)$, as well as some results of Donoso, Le, Moreira and Sun. In addition, we prove that, under the same conditions on $(a,b,c,d)$, the set $S$ is a set of recurrence for finitely generated actions of $(\mathbb{N}, \times)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.