Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathrm{PGL}_n(\mathbb{C})$-character stacks and Langlands duality over finite fields (2412.03234v4)

Published 4 Dec 2024 in math.RT and math.AG

Abstract: In this paper we study the mixed Poincar\'e polynomial of generic $\mathrm{PGL}_n(\mathbb{C})$-character stacks with coefficients in some local systems arising from the conjugacy classes of $\mathrm{PGL}_n(\mathbb{C})$ which have non-connected stabiliser. We give a conjectural formula that we prove to be true under the Euler specialisation. We then prove that this conjectured formula interpolates the structure coefficients of the two based rings$ \left(\mathcal{C}(\mathrm{PGL}_n(\mathbb{F}_q)),Loc(\mathrm{PGL}_n),*\right)$ and $\left(\mathcal{C}(\mathrm{SL}_n(\mathbb{F}_q)), CS(\mathrm{SL}_n),\cdot\right) $ where for a group $H$, $\mathcal{C}(H)$ denotes the space of complex valued class functions on $H$, $Loc(\mathrm{PGL}_n)$ denotes the basis of characteristic functions of intermediate extensions of equivariant local systems on conjugacy classes of $\mathrm{PGL}_n$ and $CS(\mathrm{SL}_n)$ the basis of characteristic functions of Lusztig's character-sheaves on $\mathrm{SL}_n$. Our result reminds us of a non-abelian Fourier transform.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com