Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Endogenous Heteroskedasticity in Linear Models (2412.02767v3)

Published 3 Dec 2024 in econ.EM

Abstract: Linear regressions with endogeneity are widely used to estimate causal effects. This paper studies a framework that involves two common issues: endogeneity of the regressors and heteroskedasticity that depends on endogenous regressors-i.e., endogenous heteroskedasticity. We show that the presence of endogenous heteroskedasticity in the structural regression renders the two-stage least squares estimator inconsistent. To address this issue, we propose sufficient conditions and a control function approach to identify and estimate the causal parameters of interest. We establish the limiting properties of the estimator--namely, consistency and asymptotic normality--and propose inference procedures. Monte Carlo simulations provide evidence on the finite-sample performance of the proposed methods and evaluate different implementation strategies. We revisit an empirical application on job training to illustrate the methods.

Summary

We haven't generated a summary for this paper yet.