Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models (2412.02193v3)

Published 3 Dec 2024 in cs.CV and cs.AI

Abstract: Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space. While foundation models demonstrate remarkable performance on some benchmarks, they still struggle with 3D reasoning tasks like arranging objects in space according to open-ended language instructions, particularly in dense and physically constrained environments. We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-LLMs (VLMs) and supports differentiable optimization to ensure physical plausibility. LayoutVLM employs VLMs to generate two mutually reinforcing representations from visually marked images, and a self-consistent decoding process to improve VLMs spatial planning. Our experiments show that LayoutVLM addresses the limitations of existing LLM and constraint-based approaches, producing physically plausible 3D layouts better aligned with the semantic intent of input language instructions. We also demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.