Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised learning-based calibration scheme for Rough Bergomi model (2412.02135v2)

Published 3 Dec 2024 in q-fin.CP

Abstract: Current deep learning-based calibration schemes for rough volatility models are based on the supervised learning framework, which can be costly due to a large amount of training data being generated. In this work, we propose a novel unsupervised learning-based scheme for the rough Bergomi (rBergomi) model which does not require accessing training data. The main idea is to use the backward stochastic differential equation (BSDE) derived in [Bayer, Qiu and Yao, {SIAM J. Financial Math.}, 2022] and simultaneously learn the BSDE solutions with the model parameters. We establish that the mean squares error between the option prices under the learned model parameters and the historical data is bounded by the loss function. Moreover, the loss can be made arbitrarily small under suitable conditions on the fitting ability of the rBergomi model to the market and the universal approximation capability of neural networks. Numerical experiments for both simulated and historical data confirm the efficiency of scheme.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com