Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schedule On the Fly: Diffusion Time Prediction for Faster and Better Image Generation (2412.01243v3)

Published 2 Dec 2024 in cs.CV and cs.AI

Abstract: Diffusion and flow matching models have achieved remarkable success in text-to-image generation. However, these models typically rely on the predetermined denoising schedules for all prompts. The multi-step reverse diffusion process can be regarded as a kind of chain-of-thought for generating high-quality images step by step. Therefore, diffusion models should reason for each instance to adaptively determine the optimal noise schedule, achieving high generation quality with sampling efficiency. In this paper, we introduce the Time Prediction Diffusion Model (TPDM) for this. TPDM employs a plug-and-play Time Prediction Module (TPM) that predicts the next noise level based on current latent features at each denoising step. We train the TPM using reinforcement learning to maximize a reward that encourages high final image quality while penalizing excessive denoising steps. With such an adaptive scheduler, TPDM not only generates high-quality images that are aligned closely with human preferences but also adjusts diffusion time and the number of denoising steps on the fly, enhancing both performance and efficiency. With Stable Diffusion 3 Medium architecture, TPDM achieves an aesthetic score of 5.44 and a human preference score (HPS) of 29.59, while using around 50% fewer denoising steps to achieve better performance.

Summary

We haven't generated a summary for this paper yet.