Papers
Topics
Authors
Recent
Search
2000 character limit reached

Schedule On the Fly: Diffusion Time Prediction for Faster and Better Image Generation

Published 2 Dec 2024 in cs.CV and cs.AI | (2412.01243v3)

Abstract: Diffusion and flow matching models have achieved remarkable success in text-to-image generation. However, these models typically rely on the predetermined denoising schedules for all prompts. The multi-step reverse diffusion process can be regarded as a kind of chain-of-thought for generating high-quality images step by step. Therefore, diffusion models should reason for each instance to adaptively determine the optimal noise schedule, achieving high generation quality with sampling efficiency. In this paper, we introduce the Time Prediction Diffusion Model (TPDM) for this. TPDM employs a plug-and-play Time Prediction Module (TPM) that predicts the next noise level based on current latent features at each denoising step. We train the TPM using reinforcement learning to maximize a reward that encourages high final image quality while penalizing excessive denoising steps. With such an adaptive scheduler, TPDM not only generates high-quality images that are aligned closely with human preferences but also adjusts diffusion time and the number of denoising steps on the fly, enhancing both performance and efficiency. With Stable Diffusion 3 Medium architecture, TPDM achieves an aesthetic score of 5.44 and a human preference score (HPS) of 29.59, while using around 50% fewer denoising steps to achieve better performance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.